Hello Programmers, In this post, you will know how to solve the HackerRank Absolute Permutation Solution. This problem is a part of the HackerRank Algorithms Series.HackerRank Absolute Permutation SolutionOne more thing to add, don’t directly look for the solutions, first try to solve the problems of Hackerrank by yourself. If you find any difficulty after trying several times, then you can look for solutions.HackerRank Absolute Permutation SolutionTaskWe define P to be a permutation of the first n natural numbers in the range [1, n]. Let denote the value at position i in permutation P using 1–based indexing.P is considered to be an absolute permutation if [pos[i] – i] = k holds true for every i ∈ [1, n].Given n and k, print the lexicographically smallest absolute permutation P. If no absolute permutation exists, print -1.Examplen = 4k = 2Create an array of elements from 1 to n, pos = [1. 2, 3, 4]. Using 1 based indexing, create a permutation where every [pos[i] – i] = k. It can be rearranged to [3, 4, 1, 2] so that all of the absolute differences equal k = 2:pos[i] i |pos[i] - i| 3 1 2 4 2 2 1 3 2 2 4 2 Function DescriptionComplete the absolutePermutation function in the editor below.absolutePermutation has the following parameter(s):int n: the upper bound of natural numbers to consider, inclusiveint k: the absolute difference between each element’s value and its indexReturnsint[n]: the lexicographically smallest permutation, or [-1] if there is noneInput FormatThe first line contains an integer t, the number of queries.Each of the next t lines contains 2 space–separated integers, n and k.Constraints1 <= t <= 101 <= n <= 1050 <= k < nSample InputSTDIN Function ----- -------- 3 t = 3 (number of queries) 2 1 n = 2, k = 1 3 0 n = 3, k = 0 3 2 n = 3, k = 2 Sample Output2 11 2 3-1ExplanationTest Case 0:Test Case 1:Test Case 2:No absolute permutation exists, so we print -1 on a new line.HackerRank Absolute Permutation SolutionAbsolute Permutation Solution in C#include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> int main() { /* Enter your code here. Read input from STDIN. Print output to STDOUT */ int i,j,n,t,k; scanf("%d",&t); while(t>0){ t--; scanf("%d %d",&n,&k); if(k==0){ for(i=0;i<n;i++)printf("%d ",i+1); printf("\n"); continue; } if((n%(2*k))!=0){ printf("-1\n"); continue; } for(i=0;i<(n/(2*k));i++){ for(j=0;j<k;j++)printf("%d ",((2*k*i)+k+j+1)); for(j=0;j<k;j++)printf("%d ",((2*k*i)+j+1)); } printf("\n"); } return 0; }Absolute Permutation Solution in Cpp#include <bits/stdc++.h> using namespace std; int N, K; int A[100000]; int main() { int T; scanf("%d", &T); while(T--) { scanf("%d%d", &N, &K); memset(A, -1, sizeof A); bool bad=false; for(int i=0; i<N; i++) { if(i-K>=0 && A[i-K]==-1) A[i-K]=i; else if(i+K<N && A[i+K]==-1) A[i+K]=i; else bad=true; } if(bad) printf("-1\n"); else { for(int i=0; i<N; i++) printf("%d ", A[i]+1); printf("\n"); } } return 0; }Absolute Permutation Solution in Javaimport java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int tc = scanner.nextInt(); for (int t = 0; t < tc; ++t) { int n = scanner.nextInt(); int k = scanner.nextInt(); print(solve(n, k)); } } private static int[] solve(int n, int k) { if (k > 0 && n % (2 * k) != 0) { return null; } int[] res = new int[n]; int shift = k; for (int i = 1; i <= n; ++i) { res[i - 1] = i + shift; if (k > 0 && i % k == 0) { shift *= -1; } } return res; } private static void print(int[] a) { if (a == null) { System.out.println(-1); return; } for (int i = 0; i < a.length; ++i) { if (i > 0) { System.out.print(" "); } System.out.print(a[i]); } System.out.println(); } }Absolute Permutation Solution in Pythondef solve(N,K): if K == 0: return range(1,1+N) if N%(2*K): return [-1] base = range(K+1,2*K+1) + range(1,1+K) ans = [] Q = N/(2*K) for q in xrange( Q ): for i in base: ans.append( q*2*K + i ) return ans rr = raw_input rrI = lambda: int(rr()) rrM = lambda: map(int,rr().split()) for _ in xrange(rrI()): print " ".join(map(str, solve(*rrM())))Absolute Permutation Solution using JavaScriptfunction processData(input) { var lines = input.split(/\n/); var tests = lines.shift(); for (var line of lines) { var info = line.split(/ /).map(Number); var n = info.shift(); var k = info.shift(); var possibilities = []; var bag = {}; var i = 1; var failed = false; while (i <= n) { var range = [i - k, k + i]; var found = false; loop: for (var j = 0; j < range.length; j++) { var choice = range[j]; if (bag[choice] == undefined && choice > 0 && choice <= n) { bag[choice] = 1; possibilities.push(choice); found = true; break loop; } } if (! found) { failed = true; break; } i++; } process.stdout.write((failed ? -1 : possibilities.join(' ')) + "\n") } } process.stdin.resume(); process.stdin.setEncoding("ascii"); _input = ""; process.stdin.on("data", function (input) { _input += input; }); process.stdin.on("end", function () { processData(_input); });Absolute Permutation Solution in Scalaimport collection.mutable.LinkedHashSet object Solution extends App { val lines = io.Source.stdin.getLines() for (tc <- 0 until lines.next.toInt) { val nums = lines.next.split(' ').map(_.toInt) val (n, k) = (nums.head, nums.last) val used = LinkedHashSet[Int]() for (i <- 1 to n) { if (ok(i - k)) used += (i - k) else if (ok(i + k)) used += (i + k) else used.clear() } println( if (used.size < n) "-1" else used.mkString(" ") ) def ok(x: Int) = x > 0 && x <= n && !used.contains(x) } }Absolute Permutation Solution in Pascaluses math; var n,p,k,i,w,t:longint; begin readln(t); for w:=1 to t do begin read(n,k); if k=0 then begin for i:=1 to n do write(i,' '); writeln(); end else if n mod (2*k)<>0 then writeln(-1) else begin p:=0; while(p*k<n) do begin for i:=p*k+k+1 to (p+2)*k do write(i,' '); for i:=p*k+1 to p*k+k do write(i,' '); inc(p,2); end; writeln(); end; end; end.Disclaimer: This problem (Absolute Permutation) is generated by HackerRank but the Solution is Provided by BrokenProgrammers. This tutorial is only for Educational and Learning purposes.Next: HackerRank 3D Surface Area Solution Post navigationHackerRank Fair Rations Solution HackerRank 3D Surface Area Solution